HCCI Combustion: the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection

John E. Dec and Magnus Sjöberg

Sandia National Laboratories

8th Diesel Engine Emissions Reduction Workshop August 25-29, 2002

Sponsor: U.S. Dept. of Energy, OTT, OAAT and OHVT

Program Managers: Kathi Epping and Gurpreet Singh

Introduction

- HCCI engines are a low-emissions alternative to diesel engines.
 - Provide diesel-like or higher efficiencies.
 - Very low engine-out NO_x and PM emissions.
- Research is required in many areas to resolve technical barriers to the development of HCCI engines by industry.
 - The objective of our work is to help provide this understanding.
- Establish a laboratory to investigate HCCI combustion fundamentals.
 - All-metal engine: fully operational result are subject of presentation.
 - Optically accessible engine: examine in-cylinder processes (end of 02).
- CHEMKIN kinetic-rate computations
 - Guide experiments
 - Assist in data analysis
 - Show limiting behavior

Engine and Operating Conditions

HCCI All-Metal Engine

Based on Cummins B, 0.98 ltr./cyl.

- Six-cylinder diesel engine converted for balanced, single-cyl., HCCl operation.
- Versatile facility to investigate various operational and control strategies.
 - Compression ratios from 13 21 (18)*
 - Swirl ratios from 0.9 3.2; 7.2 (0.9)*
 - Speeds to 3600 rpm (600 1800 rpm)*
 - Multiple fueling systems.
 - > Fully premixed (curr.)*
 - > Port fuel injection (PFI)
 - > Direct injection, gasoline-type (curr.)*
 - > Direct injection, diesel-type
 - Liquid or gas-phase fuels (iso-octane)*
- Complete intake charge conditioning.
 - Intake temperatures to 180° C. (varies)*
 - Intake pressures to 4 bars. (varies)*
 - Simulated or real EGR. (none)*

^{*} Values in (red) are used for current work.

Engine Appears to be Working Well

 $CR = 18; \ \phi = 0.24; \ P_{in} = 120 \ kPa;$ 1200 rpm; Well-Mixed Charge

Computational Approach

- Senkin application of the CHEMKIN-III kinetics rate code.
 - Single-zone model with uniform properties and no heat transfer.
 - Allows compression and expansion with slider-crank relationship.
 - Full chemistry for iso-octane (Westbrook et al., LLNL).
- Great oversimplification of a real engine. Model cannot reproduce all real-engine behavior.
- Model is well suited for investigating certain fundamental aspects of HCCI combustion.
 - Allows the effects of kinetics and thermodynamics to be isolated and evaluated without complexities of walls, crevices, and inhomogeneities.
 - > Assists in analysis of experimental data by separating chemical-kinetic and physical effects.
 - Represents the adiabatic limit for bulk-gas behavior in real engines.
 - Guide experiments by showing approximate trends in ignition timing & temperature compensation with changes in operating conditions.

CHEMKIN predicts incomplete bulk-gas reactions at low loads.

Iso-Octane; 1800 rpm; CR = 21; $T_{in} = 380 \text{ K}$; $P_{in} = 1 \text{ atm.}$

- Below $\phi = 0.2$, emissions rise followed by a drop in combustion efficiency.
 - Temperatures are too low to complete reactions, especially $CO \rightarrow CO_2$.
- Indicates high emissions of OHC as well as CO and HC.
 - OHC not well-detected by standard FID HC detector, and they can be harmful.
- Results for bulk-gas alone, in the absence of heat transfer.
 - Occurs in range of interest (typical diesel idle conditions are $\phi = 0.10 0.12$).
 - In real engine, heat transfer will shift onset of incomplete reactions to higher φ.
 - Walls & crevices also add to emissions.

SAE Paper 2002-01-1309

Vary ϕ : Experiment and CHEMKIN

Iso-Octane ; CR = 18; 1200 rpm; $P_{in} = 120 \text{ kPa}$; Pre-Mixed

- Intake temperature adjusted for 50% burn at TDC for $\phi = 0.14$.
 - Experiment: $T_{in} = 140^{\circ} C$
 - CHEMKIN: $T_{in} = 117^{\circ} C$
- Experiment shows greater variation in combustion phasing.
 - Heat transfer and residuals.
 - Advanced timing at higher loads has little effect on emissions.
 - Timing retard at low loads is small and has little effect on emissions.

Emissions: Experiment and CHEMKIN

1200 rpm; CR = 18; $P_{in} = 120$ kPa; Pre-Mixed Fueling

- Experimental T_{in} was increased to maintain near-TDC ignition.
 - Compensate for heat transfer.
- Experimental emissions match model closely.
 - CO levels match closely ~65%Bulk-gas source.
 - HC, rise for ϕ < 0.2 is similar to model indicates bulk-gas source at low ϕ .
 - Near-constant baseline level for φ > 0.2 suggest crevice source.
 - "Missing carbon" in experiment indicates presence of OHCs.
 - > Similar to model, but lower due to FID response.

Comparison of CO Emissions with ϕ at Various T_{in}

- Magnitude of increase in CO with decreasing φ agrees well with the CHEMKIN results. Shows incomplete bulk-gas reactions are the cause.
 - Onset of rise in CO levels is shifted to higher ϕ in engine due to heat transfer.
 - Rise in CO shifts to progressively higher φ as T_{in} is reduced (lower T_{combustion.}).
 - Engine data also show a large drop in combustion efficiency at low loads, corresponding to the increase in CO.

Efficiencies and Combustion Stability

$$CR = 18; P_{in} = 120 \text{ kPa};$$

 $T_{in} = 140^{\circ} \text{ C}; Pre-Mixed}$

- Combustion efficiency drops from 95% to 60% as fuel is reduced to low-idle, φ = 0.1.
 - Similar drop in pressureindicated thermal efficiency.
 - Commensurate with the rapid rise in CO.
- Std. Dev. of IMEP is 2 4
 kPa for all fueling rates (φ).
 - Increase at ϕ = 0.16 due this being in the middle of the rapid rise in CO.
- Normalized σIMEP increases below φ = 0.1 because IMEP is near zero.
 - Std. Dev. of IMEPg \leq 2.6% from ϕ = 0.1 to ϕ = 0.26.

Effect of Intake Pressure

1200 rpm; CR = 18; Pre-Mixed

- Changing P_{in} from 101 to 120 kPa has little effect on onset of incomplete bulk-gas reactions when combustion phasing is maintained.
 - Experiment and CHEMKIN both show slightly lower CO values during rapid rise.
- T_{in} adjusted for 50% burn at TDC for $\phi = 0.14$.

- 101 kPa: $T_{in} = 157^{\circ}$ C

 $- 120 \text{ kPa: } T_{in} = 140^{\circ} \text{ C}$

Effect of Engine Speed on Bulk-Gas Reactions

- T_{in} adjusted to maintain combustion phasing at TDC for $\phi = 0.14$.
 - Higher compression temperatures compensate for reduced time for reactions.
- Engine speed has little effect on the fueling rate at which the onset of incomplete bulk-gas reactions occurs – for iso-octane.
 - In agreement with CHEMKIN computations.
- Results suggest that special combustion strategies will be required for low-load operation.

GDI Fueling: Vary Injection Timing

Early Injection

- Provides a fairly uniform mixture.
 - Can lead to incomplete bulk-gas reactions at low loads, as predicted by CHEMKIN.

Late Injection

- Can provide partial charge stratification.
 - Mixture locally richer for the same fueling rate.
 - Offers the potential to mitigate incomplete bulk-gas reactions at light loads.
- Also, could prevent fuel from reaching ring-land crevice.
 - Reduce baseline emissions.

Variation in Injection Timing: $\phi = 0.1$

$T_{in} = 142^{\circ} \text{ C}; P_{in} = 120 \text{ kPa};$ 1200 rpm; GDI fueling

- Early injection (0-90° aTDC intake) provides a well-mixed charge.
 - High CO and low combustion efficiency for $\phi = 0.1$.
- Retarding injection improves combustion and emissions for low-load operation.
 - Injection at 290° reduces CO and HC emission substantially with only about 1g/kg-fuel NO_X (4 ppm).
 - Combustion efficiency increases from 59% to 82%.
- Further improvements possible with optimized stratification.

Summary and Conclusions - 1

- Metal HCCl research engine appears to be functioning well.
 - At fully combusting conditions: $\eta_{\text{thermal}} \sim 46\%$, $\sigma \text{IMEP} < 1\%$, CO < 65 g/kg (1000 ppm), HC < 35 g/kg (1200 ppm), NO_X ~ 0.06 g/kg (1 ppm).
- CHEMKIN results show that for fuel loads below $\phi \sim 0.16$, bulk-gas reactions are incomplete, even for an idealized adiabatic engine.
 - Significant combustion inefficiencies, very high CO, and increased HC.
 - > Temperatures are too low to complete reactions, mainly $CO \rightarrow CO_2$.
 - Indicate that significant OHC emissions should occur. (OHC is ~2x HC).
- Experimental data show a very similar trend to the changes in emissions and combustion efficiency as fuel loading is reduced.
 - ─ CO levels match very closely with those of the model (~65% of fuel C).
 - > Bulk-gas must be the source.
 - Onset of incomplete bulk-gas reactions occurs at higher $\phi \sim 0.2$ due to heat transfer cooling the charge.

Summary and Conclusions - 2

- The "missing carbon" in the emissions measurements matches the expected OHC trends.
 - HC detector (FID) has low sensitivity to OHC.
- Combustion stability was good even at idle loads, $\sigma IMEP \le 2.6\%$.
- Increasing P_{in} from 1.0 to 1.2 bars had little effect on the onset or magnitude of incomplete bulk-gas reactions when ignition timing was maintained.
- Changing speed from 600 to 1800 rpm has almost no effect on the onset or magnitude of incomplete bulk-gas reactions for iso-octane.
 - Increased compression temperatures required to maintain ignition timing compensate for reduced time to complete reactions.
- Partial charge stratification by late-cycle fuel injection appears to have a strong potential for mitigating the difficulties of low-load operation.